您好,欢迎来到诺达名师!
客服热线:18898361497

当前位置: 首页 > 公开课 > 供应链管理 > 数字化时代的供应链大数据分析和应用

数字化时代的供应链大数据分析和应用

培训对象:

课程目标:

费用说明:

咨 / 询 / 热 / 线 18898361497

在线咨询

数字化时代的供应链大数据分析和应用所有班级

温馨提示:为了保证课程质量,每期报名人数有限,需提前预约。点击预约

数字化时代的供应链大数据分析和应用课程介绍

课程大纲

一、供应链大数据概述

■ 供应链和采购管理的根本使命

■ 供应链管理的**新发展趋势:七大要点

■ 供应链大数据体系划分 -“获取数据”、“分析处理数据”、“为供应链增值”

■ 您从本课程中可以获得的五点收获

二、数字化企业架构:大数据分析的基础

■ 视频观看:工业4.0时代先进的供应链管理

■ 企业数字化体系介绍 -“前端”和“后端”的概念

■ 企业IT架构的类型 - 业务架构/应用架构/数据架构/技术架构

■ 数据管理六大原则 - 如何采集数据、分享数据、保障数据安全等

■ 企业架构的变迁史 - 从传统运营时代到“新零售”时代

■ 大数据相关的**新法律法规

三、数据分析的核心步骤

■ 五大分析步骤 - 数据的收集、清洗、规整、使用和更新

■ 数据分析师是什么样的人才? – 四大核心素质

■ 企业大数据应用的六个层次:从Excel到更高层次的工具应用  

■ 实操教学:基于Excel的精益生产和精益物流分析模块  

■ 实操教学:基于Excel的客户需求可视化模块

■ 实操教学:用Excel“运筹优化”模块来做采购**优决策

四、数据可视化和BI工具应用

■ 如何让数据“看得见”?- 常用的12种可视化图表及适用场合

■ 让管理者决策更简单 – BI(商业智能)基本概念

■ 案例分析:基于BI工具作企业采购金额的可视化分析        

■ 案例分析:基于BI工具作供应商质量管理的可视化分析        

■ 实操教学:基于BI工具作BLM(业务领导力模型)可视化分析

■ 小组讨论:关于BI/数据可视化的落地应用

五、Python数据分析

■ Python安装过程介绍;                      

■ Python语法简介                

■ 实操教学:Python快速提取企业年报中的大量数据    

■ Python与Excel、Power BI等分析工具的关系

■ Python和人工智能技术的关系

六、大数据应用前沿案例

■ 案例分析:某先进制造企业的基础数据管理体系

■ 案例分析:数字化工厂的快速复制”物联网技术 工业工程knowhow”如何在多个行业复制数字化工厂  

■ 案例分析:某电器公司的工业大数据体系及其效果  

■ 案例分析:某第三方物流企业如何打造跨运输方式、跨企业实体的数字化体系      

■ 案例分析:新零售巨头基于大数据的运营优化和闭环管理

■ 案例分析:新能源领域的数字化供应链  

■ 案例分析:人工智能(AI)大模型及其对供应链的意义  

■ 小组讨论:供应链大数据应用落地的要点

七、大数据分析相关资源

■ 行业前沿信息来源

■ 后续学习资源推荐

■ 讨论与答疑

最新课程

新会计法 新公司法 金四下财税合规账务清理

  • 深圳2025-03-14
  • 深圳2025-05-09
  • 深圳2025-07-04

管理者的财务思维:懂报表,通逻辑,做决策

  • 深圳2025-04-18
  • 深圳2025-06-20
  • 深圳2025-08-01

区域经理业务推动增长班

  • 广州2025-12-29
  • 成都2025-10-23
  • 杭州2025-08-14

金牌店长业绩增长破局班

  • 杭州2025-01-16
  • 成都2025-02-27
  • 广州2025-03-27

制造业全面精益生产降本增效推行策略及成功案例解析

  • 深圳2025-04-11
  • 深圳2025-05-27
  • 深圳2025-07-22

IE标准工时与劳动定额培训

  • 深圳2025-07-01
  • 深圳2025-10-27
  • 深圳2025-05-08

IE工业工程——精益现场改善利器(工厂实战版)

  • 深圳2025-03-28
  • 深圳2025-05-20
  • 深圳2025-07-16
点击在线咨询 在线咨询 电话咨询 电话咨询

咨询热线:

18898361497

扫二维码 扫二维码 二维码 返回
顶部