您好,欢迎来到诺达名师!
客服热线:18898361497

当前位置: 首页 > 项目管理 > 项目综合 > 大数据分析与挖掘综合能力提升实战 (高级)

傅一航

大数据分析与挖掘综合能力提升实战 (高级)

傅一航 / 数据分析和数据挖掘讲师

课程价格: 具体课酬和讲师商量确定

常驻地: 深圳

预定该课 下载课纲

咨 / 询 / 热 / 线 18898361497

在线咨询

课程大纲

【课程目标】

本课程为高级课程,培训的内容是继中级课程之后学习的,同时提供了更复杂的数据模型来解决实际工作中的商业决策问题。

本课程面向高级数据分析人员,以及系统开发人员。

本课程核心内容为数据挖掘,分类预测模型,以及专题模型分析,帮助学员构建系统全面的业务分析思维,提升学员的数据分析综合能力。

本课程覆盖了如下内容:

1、 数据建模过程

2、 分类预测模型

3、 分类模型优化思路

4、 市场专题分析模型




本系列课程从实际的业务需求出发,结合行业的典型应用特点,围绕实际的商业问题,对数据分析及数据挖掘技术进行了全面的介绍(从数据收集与处理,到数据分析与挖掘,再到数据可视化和报告撰写),**大量的操作演练,帮助学员掌握数据分析和数据挖掘的思路、方法、表达、工具,从大量的企业经营数据中进行分析,挖掘客户行为特点,帮助运营团队深入理解业务运作,以达到提升学员的数据综合分析能力,支撑运营决策的目的。


**本课程的学习,达到如下目的:

1、 熟悉建模的一般过程,能够独立完成整个预测建模项目的实现。

2、 熟练使用各种分类预测模型,以及其应用场景。

3、 熟悉模型质量评估的关键指标,掌握模型优化的整体思路。

4、 熟练掌握常用市场专题分析模型:

a) 学会做市场客户细分,划分客户群

b) 学会实现客户价值评估

c) 学会产品功能设计与优化

d) 掌握产品精准推荐模型,学会推荐产品

e) 熟悉产品定价策略,寻找产品**优定价


【授课时间】

2-4天时间(每天6个小时)

【授课对象】

业务支撑部、运营分析部、数据分析部、大数据系统开发部等对业务数据分析有较高要求的相关人员。

【学员要求】

1、 每个学员自备一台便携机(必须)。

2、 便携机中事先安装好Microsoft Office Excel 2013版本及以上。

3、 便携机中事先安装好IBM SPSS Statistics v24版本及以上。

注:讲师可以提供试用版本软件及分析数据源。


【授课方式】

数据分析基础 方法讲解 实际业务问题分析 工具实践操作

采用互动式教学,围绕业务问题,展开数据分析过程,全过程演练操作,让学员在分析、分享、讲授、总结、自我实践过程中获得能力提升。

【课程大纲】**部分: 数据建模过程1、 预测建模六步法

Ø 选择模型:基于业务选择恰当的数据模型

Ø 属性筛选:选择对目标变量有显著影响的属性来建模

Ø 训练模型:采用合适的算法对模型进行训练,寻找到**合适的模型参数

Ø 评估模型:进行评估模型的质量,判断模型是否可用

Ø 优化模型:如果评估结果不理想,则需要对模型进行优化

Ø 应用模型:如果评估结果满足要求,则可应用模型于业务场景

2、 数据挖掘常用的模型

Ø 数值预测模型:回归预测、时序预测等

Ø 分类预测模型:逻辑回归、决策树、神经网络、支持向量机等

Ø 市场细分:聚类、RFM、PCA等

Ø 产品推荐:关联分析、协同过滤等

Ø 产品优化:回归、随机效用等

Ø 产品定价:定价策略/**优定价等

3、 属性筛选/特征选择/变量降维

Ø 基于变量本身特征

Ø 基于相关性判断

Ø 因子合并(PCA等)

Ø IV值筛选(评分卡使用)

Ø 基于信息增益判断(决策树使用)

4、 模型评估

Ø 模型质量评估指标:R^2、正确率/查全率/查准率/特异性等

Ø 预测值评估指标:MAD、MSE/RMSE、MAPE、概率等

Ø 模型评估方法:留出法、K拆交叉验证、自助法等

Ø 其它评估:过拟合评估

5、 模型优化

Ø 优化模型:选择新模型/修改模型

Ø 优化数据:新增显著自变量

Ø 优化公式:采用新的计算公式

6、 模型实现算法(暂略)

7、 好模型是优化出来的

案例:通信客户流失分析及预警模型

第二部分: 分类预测模型问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务?

1、 分类模型概述

2、 常见分类预测模型

3、 逻辑回归(LR)

Ø 逻辑回归模型原理及适用场景

Ø 逻辑回归的种类

² 二项逻辑回归

² 多项逻辑回归

Ø 如何解读逻辑回归方程

Ø 带分类自变量的逻辑回归分析

Ø 多元逻辑回归

案例:如何评估用户是否会购买某产品(二元逻辑回归)

案例:多品牌选择模型分析(多元逻辑回归)

4、 分类决策树(DT)

问题:如何预测客户行为?如何识别潜在客户?

风控:如何识别欠贷者的特征,以及预测欠贷概率?

客户保有:如何识别流失客户特征,以及预测客户流失概率?

Ø 决策树分类简介

案例:美国零售商(Target)如何预测少女怀孕

演练:识别银行欠货风险,提取欠贷者的特征

Ø 构建决策树的三个关键问题

² 如何选择**属性来构建节点

² 如何分裂变量

² 修剪决策树

Ø 选择**优属性

² 熵、基尼索引、分类错误

² 属性划分增益

Ø 如何分裂变量

² 多元划分与二元划分

² 连续变量离散化(**优划分点)

Ø 修剪决策树

² 剪枝原则

² 预剪枝与后剪枝

Ø 构建决策树的四个算法

² C5.0、CHAID、CART、QUEST

² 各种算法的比较

Ø 如何选择**优分类模型?

案例:商场酸奶购买用户特征提取

案例:客户流失预警与客户挽留

案例:识别拖欠银行货款者的特征,避免不良货款

案例:识别电信诈骗者嘴脸,让通信更安全

5、 人工神经网络(ANN)

Ø 神经网络概述

Ø 神经网络基本原理

Ø 神经网络的结构

Ø 神经网络的建立步骤

Ø 神经网络的关键问题

Ø BP反向传播网络(MLP)

Ø 径向基网络(RBF)

案例:评估银行用户拖欠货款的概率

6、 判别分析(DA)

Ø 判别分析原理

Ø 距离判别法

Ø 典型判别法

Ø 贝叶斯判别法

案例:MBA学生录取判别分析

案例:上市公司类别评估

7、 **近邻分类(KNN)

Ø 基本原理

Ø 关键问题

8、 贝叶斯分类(NBN)

Ø 贝叶斯分类原理

Ø 计算类别属性的条件概率

Ø 估计连续属性的条件概率

Ø 贝叶斯网络种类:TAN/马尔科夫毯

Ø 预测分类概率(计算概率)

案例:评估银行用户拖欠货款的概率

9、 支持向量机(SVM)

Ø SVM基本原理

Ø 线性可分问题:**大边界超平面

Ø 线性不可分问题:特征空间的转换

Ø 维空难与核函数第三部分: 分类模型优化1、 集成方法的基本原理:利用弱分类器构建强分类模型

Ø 选取多个数据集,构建多个弱分类器

Ø 多个弱分类器投票决定

2、 集成方法/元算法的种类

Ø Bagging算法

Ø Boosting算法

3、 Bagging原理

Ø 如何选择数据集

Ø 如何进行投票

Ø 随机森林

4、 Boosting的原理

Ø AdaBoost算法流程

Ø 样本选择权重计算公式

Ø 分类器投票权重计算公式

第四部分: 市场细分模型问题:我们的客户有几类?各类特征是什么?如何实现客户细分,开发符合细分市场的新产品?如何提取客户特征,从而对产品进行市场定位?

1、 市场细分的常用方法

Ø 有指导细分

Ø 无指导细分

2、 聚类分析

Ø 如何更好的了解客户群体和市场细分?

Ø 如何识别客户群体特征?

Ø 如何确定客户要分成多少适当的类别?

Ø 聚类方法原理介绍

Ø 聚类方法作用及其适用场景

Ø 聚类分析的种类

Ø K均值聚类(快速聚类)

案例:移动三大品牌细分市场合适吗?

演练:宝洁公司如何选择新产品试销区域?

演练:如何评选优秀员工?

演练:中国各省份发达程度分析,让数据自动聚类

Ø 层次聚类(系统聚类):发现多个类别

Ø R型聚类与Q型聚类的区别

案例:中移动如何实现客户细分及营销策略

演练:中国省市经济发展情况分析(Q型聚类)

演练:裁判评分的标准衡量,避免“黑哨”(R型聚类)

Ø 两步聚类

3、 主成分分析

Ø 主成分分析方法介绍

Ø 主成分分析基本思想

Ø 主成分分析步骤

案例:如何评估汽车购买者的客户细分市场

第五部分: 客户价值分析营销问题:如何评估客户的价值?不同的价值客户有何区别对待?

1、 如何评价客户生命周期的价值

Ø 贴现率与留存率

Ø 评估客户的真实价值

Ø 使用双向表衡量属性敏感度

Ø 变化的边际利润

案例:评估营销行为的合理性

2、 RFM模型(客户价值评估)

Ø RFM模型,更深入了解你的客户价值

Ø RFM模型与市场策略

Ø RFM模型与活跃度分析

案例:淘宝客户价值评估与促销名单

案例:重购用户特征分析

第六部分: 产品推荐模型问题:购买A产品的顾客还常常要购买其他什么产品?应该给客户推荐什么产品**有可能被接受?

1、 从搜索引擎到推荐引擎

2、 常用产品援藏模型及算法

3、 基于流行度的推荐

Ø 基于排行榜的推荐,适用于刚注册的用户

Ø 优化思路:分群推荐

4、 基于内容的推荐CBR

Ø 关键问题:如何计算物品的相似度

Ø 优缺点

Ø 优化:Rocchio算法、基于标签的推荐、基于兴趣度的推荐

5、 基于用户的推荐

Ø 关键问题:如何对用户分类/计算用户的相似度

Ø 算法:按属性分类、RFM模型、PCA、聚类、按偏好分类、按地理位置

6、 协同过滤的推荐

Ø 基于用户的协同过滤

Ø 基于物品的协同过滤

Ø 冷启动的问题

案例:计算用户相似度、计算物品相似度

7、 基于关联分析的推荐

Ø 如何制定套餐,实现交叉/捆绑销售

案例:啤酒与尿布、飓风与蛋挞

Ø 关联分析模型原理(Association)

Ø 关联规则的两个关键参数

² 支持度

² 置信度

Ø 关联分析的适用场景

案例:购物篮分析与产品捆绑销售/布局优化

案例:通信产品的交叉销售与产品推荐

8、 基于分类模型的推荐

9、 其它推荐算法

Ø LFM基于隐语义模型

Ø 按社交关系

Ø 基于时间上下文

10、 多推荐引擎的协同工作第七部分: 产品设计优化1、 联合分析法

2、 离散选择模型

Ø 如何评估客户购买产品的概率

Ø 如何指导产品开发?如何确定产品的重要特性

Ø 竞争下的产品动态调价

Ø 如何评估产品的价格弹性

案例:产品开发与设计分析

案例:品牌价值与价格敏感度分析

案例:纳什均衡价格

3、 品牌价值评估

4、 新产品市场占有率评估

第八部分: 产品定价策略及产品**优定价营销问题:产品如何实现**优定价?套餐价格如何确定?采用哪些定价策略可达到利润**大化?

1、 常见的定价方法

2、 产品定价的理论依据

Ø 需求曲线与利润**大化

Ø 如何求解**优定价

案例:产品**优定价求解

3、 如何评估需求曲线

Ø 价格弹性

Ø 曲线方程(线性、乘幂)

4、 如何做产品组合定价

5、 如何做产品捆绑/套餐定价

Ø **大收益定价(演进规划求解)

Ø 避免价格反转的套餐定价

案例:电信公司的宽带、IPTV、移动电话套餐定价

6、 非线性定价原理

Ø 要理解支付意愿曲线

Ø 支付意愿曲线与需求曲线的异同

案例:双重收费如何定价(如会费 按次计费)

7、 阶梯定价策略

案例:电力公司如何做阶梯定价

8、 数量折扣定价策略

案例:如何**折扣来实现薄利多销

9、 定价策略的评估与选择

案例:零售公司如何选择**优定价策略

10、 航空公司的收益管理

Ø 收益管理介绍

Ø 如何确定机票预订限制

Ø 如何确定机票超售数量

Ø 如何评估模型的收益

案例:FBN航空公司如何实现收益管理(预订/超售)第九部分: 信用评分卡模型信用评分卡模型简介

评分卡的关键问题

信用评分卡建立过程

Ø 筛选重要属性

Ø 数据集转化

Ø 建立分类模型

Ø 计算属性分值

Ø 确定审批阈值

筛选重要属性

Ø 属性分段

Ø 基本概念:WOE、IV

Ø 属性重要性评估

数据集转化

Ø 连续属性**优分段

Ø 计算属性取值的WOE

建立分类模型

Ø 训练逻辑回归模型

Ø 评估模型

Ø 得到字段系数

计算属性分值

Ø 计算补偿与刻度值

Ø 计算各字段得分

Ø 生成评分卡

确定审批阈值

Ø 画K-S曲线

Ø 计算K-S值

Ø 获取**优阈值

第十部分: 实战篇1、 电信业客户流失预警和客户挽留模型实战

2、 银行欠贷风险预测模型实战

3、 银行信用卡评分模型实战


结束:课程总结与问题答疑。


上一篇: 合同法公司法 下一篇:呼叫中心的数据分析综合能力提升培训

下载课纲

X
""